▎ 摘 要
The uniaxially strained graphene monolayer on transition metal dichalcogenide (GrTMD) substrate, constituting a van der Waals heterostructure (vdWH), is found to possess unusual intra-band plasmon dispersion (omega similar to q(2/3)) with stronger incarceration compared to that of a standalone, doped graphene for finite doping in the long wavelength limit. The intra-band absorbance of GrTMD is found to be an increasing (decreasing) function of the strain field (frequency) at a given frequency (strain field). It is also observed that whereas the strain field is responsible for the valley polarization, a Rashba coupling-dependent pseudo Zeeman term arising due to the interplay of substrate-induced interactions is found to bring about the spin degeneracy lifting and the gate voltage tunable spin polarization. The latter turns out to be inversely proportional to the square root of the carrier concentration.