• 文献标题:   Graphene Oxide Waveguide and Micro-Ring Resonator Polarizers
  • 文献类型:   Article
  • 作  者:   WU JY, YANG YY, QU Y, XU XY, LIANG Y, CHU ST, LITTLE BE, MORANDOTTI R, JIA BH, MOSS DJ
  • 作者关键词:   2d material, graphene oxide, integrated photonic, material anisotropy, polarization control
  • 出版物名称:   LASER PHOTONICS REVIEWS
  • ISSN:   1863-8880 EI 1863-8899
  • 通讯作者地址:   Swinburne Univ Technol
  • 被引频次:   12
  • DOI:   10.1002/lpor.201900056 EA AUG 2019
  • 出版年:   2019

▎ 摘  要

Integrated waveguide polarizers and polarization-selective micro-ring resonators (MRRs) incorporated with graphene oxide (GO) films are experimentally demonstrated. CMOS-compatible doped silica waveguides and MRRs with both uniformly coated and patterned GO films are fabricated based on a large-area, transfer-free, layer-by-layer GO coating method that yields precise control of the film thickness. Photolithography and lift-off processes are used to achieve photolithographic patterning of GO films with precise control of the placement and coating length. Detailed measurements are performed to characterize the performance of the devices versus GO film thickness and coating length as a function of polarization, wavelength and power. A high polarization dependent loss of approximate to 53.8 dB is achieved for the waveguide coated with 2-mm-long patterned GO films. It is found that intrinsic film material loss anisotropy dominates the performance for less than 20 layers whereas polarization-dependent mode overlap dominates for thicker layers. For the MRRs, the GO coating length is reduced to 50 mu m, yielding a approximate to 8.3 dB polarization extinction ratio between transverse electric (TE) and transverse magnetic (TM) resonances. These results offer interesting physical insights and trends of the layered GO films and demonstrate the effectiveness of introducing GO films into photonic-integrated devices to realize high-performance polarization selective components.