▎ 摘 要
We have developed a novel one-step and effective electro-chemical (EC) method to directly exfoliate graphite into thin reduced graphene oxide (RGO) nanosheets at room temperature. The oxidation degree of the RGOs depends on the switching potentials of the EC synthesis. The high switching potential can significantly increase the C/O ratio of the RGOs. The ability to control the light-absorption of the RGOs by simply adjusting the switching potentials can be further achieved. Additionally, we also construct a RGO-ZnO heterojunction and investigate its photoelectro-chemical (PEC) properties. The results show that highly photoactive RGO as a photosensitizer can make H-2 evolution easier and improve the photoconversion ability of ZnO under visible-light irradiation. This approach presents us with a possibility for the environmentally friendly, ultrafast, low-cost, and large-scale production of RGOs and great potential in solar-energy conversion applications of graphene-based materials.