• 文献标题:   Redox Sensitive Hyaluronic Acid-Decorated Graphene Oxide for Photothermally Controlled Tumor-CytoplasmSelective Rapid Drug Delivery
  • 文献类型:   Article
  • 作  者:   YIN TJ, LIU JY, ZHAO ZK, ZHAO YY, DONG LH, YANG M, ZHOU JP, HUO MR
  • 作者关键词:  
  • 出版物名称:   ADVANCED FUNCTIONAL MATERIALS
  • ISSN:   1616-301X EI 1616-3028
  • 通讯作者地址:   China Pharmaceut Univ
  • 被引频次:   55
  • DOI:   10.1002/adfm.201604620
  • 出版年:   2017

▎ 摘  要

Nanocarriers capable of circumventing various biological barriers between the site of administration and the therapeutic target hold great potential for cancer treatment. Herein, a redox-sensitive, hyaluronic acid-decorated graphene oxide nanosheet (HSG) is developed for tumor cytoplasm-specific rapid delivery using near-infrared (NIR) irradiation controlled endo/lysosome disruption and redox-triggered cytoplasmic drug release. Hyaluronic acid (HA) modification through redox-sensitive linkages permits HSG a range of advantages over the standard graphene oxide, including high biological stability, enhanced drug-loading capacity for aromatic molecules, HA receptormediated active tumor targeting, greater NIR absorption and thermal energy translation, and a sharp redox-dependent response for accelerated cargo release. Results of in vivo and in vitro testing indicate a high loading of doxorubicin (DOX) onto HSG. Selective delivery to HA-receptor overexpressing tumors is achieved through passive and active targeting with minimized unfavorable interactions with blood components. Cytoplasm-specific DOX delivery is then achieved through NIR controlled endo/lysosome disruption along with redox-triggered release of DOX in glutathione rich areas. HSG's specificity is resulted in enhanced cytotoxicity of chemotherapeutics with minimal collateral damage to healthy tissues in a xenograft animal tumor model. HSG is validated the programmed delivery of therapeutic agents in a spatiotemporally controlled manner to overcome multiple biological barriers results in specific and enhanced cancer treatment.