▎ 摘 要
The field of photocatalytic hydrogen evolution has almost exclusively concentrated on semiconductor photocatalysts, with few reports of non-semiconductor photocatalytic systems due to the small number of non-semiconductor catalysts and their poor photocatalytic ability. Herein, dendrite-like plasmonic CuNi bimetal was prepared by a hydrothermal method, followed by modification with reduced graphene oxide (rGO) nanosheets to facilitate the separation of the electron-hole pair and improve the photocatalytic H-2 evolution rate. The electron-hole pair originates from the surface plasmon resonance (SPR) effect of Cu in CuNi bimetal. Importantly, a near-infrared photocatalytic activity was confirmed with monochromatic light irradiation at a wavelength of 800 and 900 nm in the photocatalytic system due to the broad-spectrum response of plasmonic Cu. In addition, this photocatalyst exhibited favorable stability and repeatability in five consecutive runs of accumulatively 30 h. This study provides a new and significant approach for the development of a non-semiconductor photocatalytic system, which could effectively broaden the scope of the photocatalyst field.