• 文献标题:   Super expanded freestanding 3D graphene foam as a versatile platform for CO2 capture and hydrogenation
  • 文献类型:   Article
  • 作  者:   ROY S, GHOSH BD, GOH KL, AHN HJ, CHANG YW
  • 作者关键词:   graphene, co2, foam, exfoliation, catalyst, hydrogenation
  • 出版物名称:   CHEMICAL ENGINEERING JOURNAL
  • ISSN:   1385-8947 EI 1873-3212
  • 通讯作者地址:  
  • 被引频次:   0
  • DOI:   10.1016/j.cej.2023.143326 EA MAY 2023
  • 出版年:   2023

▎ 摘  要

A robust fabrication process has been developed to produce super-expanded freestanding 3D reduced graphene oxide foams (SE-rGO) with an outstanding porous architecture and stable geometry for effective capture (from the atmosphere) and the conversion of CO2 into fuel. The 3D SE-rGO foam was prepared using salicylic acidinduced exfoliation of graphene layers based on a template-assisted process. The foam was then coated with a thin layer of polydopamine (pDA) to enhance its physical and functional properties. The morphology and structural integrity of the foam were examined using SEM, XRD, XPS, and TGA. Owing to its unique 3D porous architecture and large specific surface area (767 m2/g, SSA), the foam displayed excellent multifunctional attributes, namely high CO2 adsorption capacity (4.17 mmol/g) and catalytic support for effective CO2 hydrogenation to formate. The key catalytic activity was made possible by coating the foam with palladium nanoparticles. The coated foam showed outstanding hydrogenation of CO2 to formate with a maximum yield of 24.3% at 120 degrees C. Given its potential, this graphene foam can be a promising and versatile material for both CO2 capture and CO2 hydrogenation.