▎ 摘 要
The flexible and highly stable graphene oxide (GO)/silver nanowires (AgNWs) hybrid transparent conductive electrode (TCE) was fabricated by coating AgNWs and GO inks on the surface of polyethylene terephthalate (PET) using a Meyer rod. The as-prepared GO/AgNWs hybrid TCE with a GO concentration of 0.75 mgml(-1) exhibits excellent optoelectronic performances with a sheet resistance of 25 omega sq(-1), a transmittance of 87.6% at 550 nm, and a lower surface roughness with a root mean square (RMS) roughness value of 4.86 nm. The existence of protective GO layer endows excellent thermal oxidation resistance and outperforming mechanical stabilities for GO/AgNWs hybrid TCE even at the conditions of temperature 80 degrees C, relative humidity (RH) 75% for 16 days, at room temperature in ambient air for 3 months, and mechanical bending of 2200 times, respectively. The GO/AgNWs hybrid TCE is a promising candidate for ITO used in optical devices such as organic light-emitting diodes (OLEDs), solar cells and flat panel displays.