▎ 摘 要
In this article, we present a comprehensive characterization of three carbon nanomaterials of technological interest: graphene, graphane, and fluorinated graphene. By means of first principles and tight-binding calculations in combination with analytical methods, we carried out detailed comparative studies of their structural, mechanical, thermal, and electronic properties. The calculated elastic properties of these materials confirm their high mechanical stability and stiffness, which in association with their low dimensionality, translates into a large ballistic thermal conductance. Furthermore, we show that while graphene is a zero gap semi-metal, graphane and fluorinated graphene are wide gap semiconductors. Finally, we discuss designed interfaces between these systems, and show that their physical properties have potential applications in nanoelectronic devices. (C) 2010 Elsevier B.V. All rights reserved.