▎ 摘 要
Carbon coating is an effective approach to improve the cycling stability of silicon (Si) anodes for lithium-ion batteries. In this research, we report a facile one-step carbon-thermal method to coat Si nanoparticles with nitrogen-doped (N-doped) graphene-like nanosheets derived from a liquid-polyacrylonitrile (LPAN) precursor. The coated Si anode displays an initial coulombic efficiency of 82%, which is about three times greater than its pristine counterpart, as well as superior cycling stability. The performance improvement is a result of the N-doped graphene-like nanosheet conformal coating, which not only creates an electrically conductive network for the electrode, but also provides a buffering matrix to accommodate the volume change of Si during charging and discharging processes.