▎ 摘 要
We have fabricated a four-element graphene/silicon on insulator (SOI) based Schottky barrier photodiode array (PDA) and investigated its optoelectronic device performance. In our device design, monolayer graphene is utilized as a common electrode on a lithographically defined linear array of n-type Si channels on a SOI substrate. As revealed by wavelength resolved photocurrent spectroscopy measurements, each element in the PDA structure exhibited a maximum spectral responsivity of around 0.1 A/W under a self-powered operational mode. Time-dependent photocurrent spectroscopy measurements showed excellent photocurrent reversibility of the device with ~1.36 and ~1.27 mu s rise time and fall time, respectively. Each element in the array displayed an average specific detectivity of around 1.3 x 10(12) Jones and a substantially small noise equivalent power of ~0.14 pW/Hz(-1/2). The study presented here is expected to offer exciting opportunities in terms of high value-added graphene/Si based PDA device applications such as multi-wavelength light measurement, level metering, high-speed photometry, and position/motion detection.