▎ 摘 要
Pursuing larger tunnel magnetoresistance is a significant work to develop attractive spin-valve devices for high-performance read heads of hard disk drives, magnetic random access memories, and transistors. Here, we propose an ultra-giant magnetoresistance reaching higher than 40 000% at room temperature by using a spin valve of an armchair graphene nanoribbon with double gate-controlled potential barriers. The ultra-giant magnetoresistance approximately 60 times larger than that of traditional MgO-barrier spin valves is caused by an extraordinary current suppression in the antiparallel mode. Moreover, owing to the concept of the gate-voltage barrier, the proposed system provided not only lower complexity of the fabricating standard but also longer endurance of the operation than traditional spin-valve devices.