• 文献标题:   Graphene-Ta2O5 heterostructure enabled high performance, deep-ultraviolet to mid-infrared photodetection
  • 文献类型:   Article
  • 作  者:   HO VX, WANG YF, COONEY MP, VINH NQ
  • 作者关键词:  
  • 出版物名称:   NANOSCALE
  • ISSN:   2040-3364 EI 2040-3372
  • 通讯作者地址:  
  • 被引频次:   7
  • DOI:   10.1039/d1nr01572a EA MAY 2021
  • 出版年:   2021

▎ 摘  要

Ultrafast, high sensitive, low cost photodetectors operating at room temperature sensitive from the deep-ultraviolet to mid-infrared region remain a significant challenge in optoelectronics. Achievements in traditional semiconductors using cryogenic operation and complicated growth processes prevent the cost-effective and practical application of broadband detectors. Alternative methods towards high-performance photodetectors, hybrid graphene-semiconductor colloidal quantum dots have been intensively explored. However, the operation of these photodetectors has been limited by the spectral bandwidth and response time. Here, we have demonstrated hybrid photodetectors operating from the deep-ultraviolet to the mid-infrared region with high sensitivity and ultrafast response by coupling graphene with a p-type semiconductor photosensitizer, nitrogen-doped Ta2O5 thin film. Photons with energy higher than the energy of the defect centers release holes from neutral acceptors. The holes are transferred into graphene, leaving behind ionized acceptors. Due to the advantage of two-dimensional heterostructure including homogeneous thickness, extending in a two-dimensional plane, large contact area between the N-Ta2O5 thin film and graphene, and the high mobility of carriers in graphene, holes are transferred rapidly to graphene and recirculated during the long lifetime of ionized acceptors. The photodetectors achieve a high photo-responsivity (up to 3.0 x 10(6) A W-1), ultrafast rise time (faster than 20 ns), and a specific detectivity (up to similar to 2.2 x 10(12) Jones). The work provides a method for achieving high-performance optoelectronics operating in the deep-ultraviolet to mid-infrared region.