▎ 摘 要
In this work, carbon quantum dots (CQD) encapsulated in super small platinum nanocrystals core-shell architecture/nitrogen doped graphene hybrid nanocomposite (CQD@PDA@PtNCs-NGR) was design synthesized. Without using any capping reagent, stabilizer and surfactant, very small CQD was served as template and anchoring point for the synthesis of Pt NCs with a super small size (2.25 nm) and a uniform distribution. Meanwhile, dopamine (DA) was used as bridging agent, positioning agent and weak reducing agent to make Pt2+ grow on the CQD. Combine the high dispersed Pt NCs with high specific surface area and high conductivity of NGR, the CQD@PDA@PtNCs-NGR shows excellent electrocatalytic performance towards the biosensing of DNA damage biomarker-8-Hydroxy-2'-deoxyguanosine (8-OH-dG). A very low detection limit of 0.45 nM and 0.85 nM (S/N = 3), a wide linear range of 0.013 mu M -109.78 mu M and a high sensitivity of 7.912 mA mu M-1 cm(-2) and 4.190 mA mu M-1 cm(-2) were obtained. The fabricated CQD@PDA@PtNCs-NGR realized the detection of 8-OH-dG in human urine practical sample. Furthermore, CQD@ PDA@ PtNCs-NGR was applied for the determination of 8-OH-dG generated from damaged DNA and damaged guanine (G), respectively. This work effectively combines the electrochemical signal of 8-OH-dG with DNA damage, confirms the mechanism of DNA damage, which might pave a new way to establish the associations between degree of DNA damage and 8-OH-dG. (c) 2018 Elsevier B.V. All rights reserved.