▎ 摘 要
HIV-1 protease is essential for the life cycle of the human immunodeficiency virus (HIV), and is one of the most important clinical targets for antiretroviral therapies. In this work, we developed a graphene oxide (GO)-based fluorescence biosensing platform for the rapid, sensitive, and accurate detection of HIV-1 protease, in which fluorescent-labeled HIV-1 protease substrate peptide molecules were covalently linked to GO. In the absence of HIV-1 protease, fluorescein was effectively quenched by GO. In contrast, in the presence of HIV-1 protease, it would cleave the substrate peptide into short fragments, thus producing fluorescence. Based on this sensing strategy, HIV-1 protease could be detected at as low as 1.18 ng/mL. More importantly, the sensor could successfully detect HIV-1 protease in human serum. Such GO-based fluorescent sensors may find useful applications in many fields, including diagnosis of protease-related diseases, as well as sensitive and high-throughput screening of drug candidates.