▎ 摘 要
Graphene nanoribbons (GNRs) hold great promise for future electronics because of their edge and width dependent electronic bandgaps and exceptional transport properties. While significant progress toward GNR devices has been made, the field has been limited by difficulties achieving narrow widths, global alignment, and atomically pristine GNR edges on technologically relevant substrates. A recent advance has challenged these limits by using Ge(001) substrates to direct the bottom-up growth of GNRs with nearly pristine armchair edges and widths near similar to 10 nm via atmospheric pressure chemical vapor deposition. In this work, the growth of GNRs on Ge(001) is extended to ultra-high vacuum conditions, resulting in the realization of GNRs with widths narrower than 5 nm. Armchair graphene nanoribbons oriented along Ge < 110 > surface directions are achieved with excellent width control and relatively large bandgaps. The bandgap magnitude and electronic uniformity of these sub-5 nm GNRs are well-suited for emerging nanoelectronic applications. Published by AIP Publishing.