▎ 摘 要
Graphene and carbon nanotubes (CNTs) represent attractive materials for photovoltaic (PV) devices due to their unique electronic and optical properties. Graphene and single-wall carbon nanotubes (SWNTs) layers can be directly configured as energy conversion materials to fabricate thin-film solar cells, serving as both photogeneration sites and charge carrier collecting/transport layers. SWNTs can be modified into either p-type conductor through chemical doping (like acidic purification) or n-type conductor through polymer functionalisation. The solar cells can be simply made of a semitransparent thin film of graphene (or SWNTs) deposited on a proper type of silicon substrate to create high-density Schottky (or p-n) junctions at the interface. The high aspect ratios and large surface area of these carbon nano-structured materials can benefit exciton dissociation and charge carrier transport thus improving the power conversion efficiency.