• 文献标题:   Extremely large, non-oxidized graphene flakes based on spontaneous solvent insertion into graphite intercalation compounds
  • 文献类型:   Article
  • 作  者:   KIM J, YOON G, KIM J, YOON H, BAEK J, LEE JH, KANG K, JEON S
  • 作者关键词:  
  • 出版物名称:   CARBON
  • ISSN:   0008-6223 EI 1873-3891
  • 通讯作者地址:   Korea Adv Inst Sci Technol
  • 被引频次:   6
  • DOI:   10.1016/j.carbon.2018.06.071
  • 出版年:   2018

▎ 摘  要

Demand for an effective strategy for exfoliating layered materials into flakes without perturbing their intrinsic structure is growing. Herein, we introduce an effective fabrication method of large-sized non-oxidized graphene flakes (NOGFs) as a representative example of a general strategy using spontaneous insertion of exfoliating medium into a layered material. We fabricated a ternary graphite intercalation compound (t-GIC) with stoichiometry of KC24(THF)(2), and analyzed its morphology and electronic structure through experimental and computational approach. Interactions between the t-GIC and aprotic organic solvents with different polarities were investigated, where a unique swelling behavior was observed with dimethyl sulfoxide (DMSO). Based on the analysis of the phenomena, we demonstrate facile exfoliation of the t-GIC in polyvinyl pyrrolidone (PVP)-DMSO solution for fabrication of highly crystalline and large-sized NOGFs. The lateral size of the NOGFs ranges over 30 mu m, while the 98% having thickness below 10 layers. The NOGF film exhibits supreme electrical conductivity of 3.36 x 10(5) S/m, which is, to our best knowledge, the highest value for a thin conductive film made of graphene flakes. (C) 2018 Elsevier Ltd. All rights reserved.