▎ 摘 要
Recently, pharmaceutically active compounds including antibiotics have been detected in drinking water at very low levels, mostly nanogram/liter concentrations, proposing that these materials were unaffected by water treatment processes. Adsorption processes were suggested to play a significant role in the removal of antibiotics. In this study, the adsorption behavior of doxycycline (DC) in aqueous solution was evaluated. The four factors influencing the adsorption of DC onto graphene nanosheet (GNS) were studied. The results showed that initial pH similar to 6 to 7 and contact time similar to 200 min are optimum. The monolayer adsorption capacity was reduced with the increasing temperature from 25 to 45 degrees C. Nonlinear regressions were carried out to define the best fit model for every system. Among various models, the Hill isotherm model represented the equilibrium adsorption data of antibiotics while the kinetic data were well fitted by the Elovich kinetic model. The maximum adsorption capacity (q(max)) was 110 mg.g(-1), obtained from the Hill equation. Semiempirical molecular orbital theory was used to investigate the molecular interaction of the adsorption system. The experiments and semiempirical computation have systematically demonstrated that DC could be adsorbed onto GNS by pi-pi and electrostatic interactions. It was shown that there is a good compromise with the experimental results.