• 文献标题:   Cracking of Polycrystalline Graphene on Copper under Tension
  • 文献类型:   Article
  • 作  者:   NA SR, WANG XH, PINER RD, HUANG R, WILLSON CG, LIECHTI KM
  • 作者关键词:   graphene, channel crack, fracture energy, stress transfer, interfacial shear stres
  • 出版物名称:   ACS NANO
  • ISSN:   1936-0851 EI 1936-086X
  • 通讯作者地址:   Univ Texas Austin
  • 被引频次:   25
  • DOI:   10.1021/acsnano.6b05101
  • 出版年:   2016

▎ 摘  要

Roll-to-roll manufacturing of graphene is attractive because of its compatibility with flexible substrates and its promise of high-speed production. Several prototype roll-to-roll systems have been demonstrated, which produce large-scale graphene on polymer films for transparent conducting film applications.1-4 In spite of such progress, the quality of graphene may be influenced by the tensile forces that are applied during roll to-roll transfer. To address this issue, we conducted in situ tensile experiments on copper foil coated with graphene grown by chemical vapor deposition, which were carried out in a scanning electron microscope. Channel cracks, which were perpendicular to the loading direction, initiated over the entire graphene monolayer at applied tensile strain levels that were about twice the yield strain of the (annealed) copper. The spacing between the channel cracks decreased with increasing applied strain, and new graphene wrinkles that were parallel to the loading direction appeared. These morphological features were confirmed in more detail by atomic force microscopy. Raman spectroscopy was used to determine the strain in the graphene, which was related to the degradation of the graphene/copper interface. The experimental data allowed the fracture toughness of graphene and interfacial properties of the graphene/copper interface to be extracted based on classical channel crack and shear-lag models. This study not only deepens our understanding of the mechanical and interfacial behavior of graphene on copper but also provides guidelines for the design of roll-to-roll processes for the dry transfer of graphene.