• 文献标题:   Fast water flow through graphene nanocapillaries: A continuum model approach involving the microscopic structure of confined water
  • 文献类型:   Article
  • 作  者:   NEEKAMAL M, LOHRASEBI A, MOUSAEI M, SHAYEGANFAR F, RADHA B, PEETERS FM
  • 作者关键词:  
  • 出版物名称:   APPLIED PHYSICS LETTERS
  • ISSN:   0003-6951 EI 1077-3118
  • 通讯作者地址:   Shahid Rajaee Teacher Training Univ
  • 被引频次:   4
  • DOI:   10.1063/1.5037992
  • 出版年:   2018

▎ 摘  要

Water inside a nanocapillary becomes ordered, resulting in unconventional behavior. A profound enhancement of water flow inside nanometer thin capillaries made of graphene has been observed [Radha et al., Nature (London) 538, 222 (2016)]. Here, we explain this enhancement as due to the large density and the extraordinary viscosity of water inside the graphene nanocapillaries. Using the Hagen-Poiseuille theory with slippage-boundary condition and incorporating disjoining pressure term in combination with results from molecular dynamics simulations, we present an analytical theory that elucidates the origin of the enhancement of water flow inside hydrophobic nanocapillaries. Our work reveals a distinctive dependence of water flow in a nanocapillary on the structural properties of nanoconfined water in agreement with experiment, which opens a new avenue in nanofluidics. Published by AIP Publishing.