▎ 摘 要
Highly porous, three-dimensional (3D) nanostructured composite adsorbents of reduced graphene oxides/Mn3O4 (RGO/Mn3O4) were fabricated by a facile method of a combination of reflux condensation and solvothermal reactions and systemically characterized. The as-prepared RGO/Mn3O4 possesses a mesoporous 3D structure, in which Mn3O4 nanoparticles are uniformly deposited on the surface of the reduced graphene oxide. The adsorption properties of RGO/Mn3O4 to antimonite (Sb(III)) and antimonate (Sb(V)) were investigated using batch experiments of adsorption isotherms and kinetics. Experimental results show that the RGO/Mn3O4 composite has fast liquid transport and superior adsorption capacity toward antimony (Sb) species in comparison to six recent adsorbents reported in the literature and summarized in a table in this paper. Theoretical maximum adsorption capacities of RGO/Mn3O4 toward Sb(III) and Sb(V) are 151.84 and 105.50 mg/g, respectively, modeled by Langmuir isotherms. The application of RGO/Mn3O4 was demonstrated by using drinking water spiked with Sb (320 mu g/L). Fixed-bed column adsorption experiments indicate that the effective breakthrough volumes were 859 and 633 mL bed volumes (BVs) for the Sb(III) and Sb(V), respectively, until the maximum contaminant level of 5 ppb was reached, which is below the maximum limits allowed in drinking water according to the most stringent regulations. The advantages of being nontoxic, highly stable, and resistant to acid and alkali and having high adsorption capacity toward Sb(III) and Sb(V) confirm the great potential application of RGO/Mn3O4 in Sb-spiked water treatment.