• 文献标题:   Active Temporal Control of Radiative Heat Transfer with Graphene Nanodisks
  • 文献类型:   Article
  • 作  者:   ZUNDEL L, MANJAVACAS A
  • 作者关键词:  
  • 出版物名称:   PHYSICAL REVIEW APPLIED
  • ISSN:   2331-7019
  • 通讯作者地址:   Univ New Mexico
  • 被引频次:   0
  • DOI:   10.1103/PhysRevApplied.13.054054
  • 出版年:   2020

▎ 摘  要

The ability to dynamically control the radiative transfer of heat at the nanoscale holds the key to the development of a diverse number of technologies, ranging from nanoscale thermal-management systems to improved thermophotovoltaic devices. Recently, graphene has emerged as an ideal material to achieve this goal, since it can be electrically doped to support surface plasmons, collective oscillations of the conduction electrons. These resonances produce large and spectrally narrow optical cross sections, which dictate the emission and absorption properties of the graphene nanostructure and, thus, the heat that it radiatively exchanges with other objects and the environment. For attainable levels of doping, the plasmons supported by graphene nanostructures naturally lie in the midinfrared part of the spectrum, which is the most relevant wavelength range for radiative heat transfer under realistic temperatures. Furthermore, these resonances are actively tunable, thus providing full dynamic control over the heat transfer. Motivated by this great potential, we present a comprehensive analysis of the temporal evolution of the radiative heat transfer between arrangements of graphene nanodisks, showing that it is possible to exploit the tunability of these structures to obtain actively controlled heat transfer scenarios not possible with conventional passive nanostructures. The results of this work provide a framework for achieving fully dynamical control over nanoscale radiative heat transfer and thus provide fundamental insights into this process.