▎ 摘 要
Graphene oxide (GO), which consists of two-dimensional (2D) sp(2) carbon hexagonal networks and oxygen-contained functional groups, has laid the foundation of mass production and applications of graphene materials. Made by chemical oxidation of graphite, GO is highly dispersible or even solubilized in water and polar organic solvents, which resolves the hard problem of graphene processing and opens a door to wet-processing of graphene. Despite its defects, GO is easy to functionalize, dope, punch holes, cut into pieces, conduct chemical reduction, form lyotropic liquid crystal, and assemble into macroscopic materials with tunable structures and properties as a living building block. GO sheet has been viewed as a single molecule, a particle, as well as a soft polymer material. An overview on GO as a 2D macromolecule is essential for studying its intrinsic properties and guiding the development of relevant subjects. This review mainly focuses on recent advances of GO sheets, from single macromolecular behavior to macro-assembled graphene material properties. The first part of this review offers a brief introduction to the synthesis of GO molecules. Then the chemical structure and physical properties of GO are presented, as well as its polarity in solvent and rheology behavior. Several key parameters governing the ultimate stability of GO colloidal behavior, including size, pH and the presence of cation in aqueous dispersions, are highlighted. Furthermore, the discovery of GO liquid crystal and functionalization of GO molecules have built solid new foundations of preparing highly ordered, architecture-tunable, macro-assembled graphene materials, including 1D graphene fibers, 2D graphene films, and 3D graphene architectures. The GO-based composites are also viewed and the interactions between these target materials and GO are carefully discussed. Finally, an outlook is provided in this field, where GO is regarded as macromolecules, pointing out the challenges and opportunities that exist in the field. We hope that this review will be beneficial to the understanding of GO in terms of chemical structure, molecular properties, macro-assembly and potential applications, and encourage further development to extend its investigations from basic research to practical applications.