▎ 摘 要
Charge carrier modulation of graphene-based field effect transistors (GFETs) is the key factor to utilize and enhance its fascinating properties for technological applicability. Here, we have demonstrated the gate-dependent tweaking of electrical properties of graphene devices by application of honey as a top gate dielectric. Electrical characterization of dual-gated GFET is elucidated at different top and back-gate voltages. A charge neutrality point is fine-tuned by varying the top gate voltage (V-tg) from + 3 to - 4 V. The change in carrier density is clearly observed from 3.66 x 10(12) to 2.15 x 10(11) cm(-2) at + 3 to - 4 V-tg. The charge carrier mobility of gel-gated GFET is increased significantly to 5376 cm(2)/V . sec by increasing top-gate voltages up to - 4 V. Result demonstrates a cost-effective, facile and rapid fabrication of top-gated devices and suggest natural dielectric materials as good candidate to replace conventionally available gate dielectrics in FET technology.