• 文献标题:   Ultrathin Two-Dimensional MnO2/Graphene Hybrid Nanostructures for High-Performance, Flexible Planar Supercapacitors
  • 文献类型:   Article
  • 作  者:   PENG LL, PENG X, LIU BR, WU CZ, XIE Y, YU GH
  • 作者关键词:   planar supercapacitor, birnessite deltamno2, ultrathin nanosheet, allsolidstate, layerbylayer assembly, energy storage
  • 出版物名称:   NANO LETTERS
  • ISSN:   1530-6984 EI 1530-6992
  • 通讯作者地址:   Univ Sci Technol China
  • 被引频次:   584
  • DOI:   10.1021/nl400600x
  • 出版年:   2013

▎ 摘  要

Planar supercapacitors have recently attracted much attention owing to their unique and advantageous design for 2D nanomaterials based energy storage devices. However, improving the electrochemical performance of planar supercapacitors still remains a great challenge. Here we report for the first time a novel, high-performance in-plane supercapacitor based on hybrid nanostructures of quasi-2D ultrathin MnO2/graphene nanosheets. Specifically, the planar structures based on the (delta-MnO2 nanosheets integrated on graphene sheets not only introduce more electrochemically active surfaces for absorption/desorption of electrolyte ions, but also bring additional interfaces at the hybridized interlayer areas to facilitate charge transport during charging/discharging processes. The unique structural design for planar supercapacitors enables great performance enhancements compared to graphene-only devices, exhibiting high specific capacitances of 267 F/g at current density of 0.2 A/g and 208 F/g at 10 A/g and excellent rate capability and cycling stability with capacitance retention of 92% after 7000 charge/discharge cycles. Moreover, the high planar malleability of planar supercapacitors makes possible superior flexibility and robust cyclability, yielding capacitance retention over 90% after 1000 times of folding/unfolding. Ultrathin 2D nanomaterials represent a promising material platform to realize highly flexible planar energy storage devices as the power back-ups for stretchable/flexible electronic devices.