▎ 摘 要
A different mechanism was found for Cu transport through multi-transferred single-layer graphene serving as diffusion barriers on the basis of time-dependent dielectric breakdown tests. Vertical and lateral transport of Cu dominates at different stress electric field regimes. The classic E-model was modified to project quantitatively the effectiveness of the graphene Cu diffusion barrier at low electric field based on high-field accelerated stress data. The results are compared to industry-standard Cu diffusion barrier material TaN. 3.5 angstrom single-layer graphene shows the mean time-to-fail comparable to 4 nm TaN, while two-time and three-time transferred single-layer graphene stacks give 2x and 3x improvements, respectively, compared to single-layer graphene at a 0.5 MV/cm electric field. The influences of graphene grain boundaries on Cu vertical transport through the graphene layers are explored, revealing that large-grain (10-15 mu m) single-layer graphene gives a 2 orders of magnitude longer lifetime than small-grain (2-3 mu m)graphene. As a result, it is more effective to further enhance graphene barrier reliability by improving single-layer graphene quality through increasing grain sizes or using single-crystalline graphene than just by increasing thickness through multi-transfer. These results may also be applied for graphene as barriers for other metals.