• 文献标题:   Kondo Effect of Cobalt Adatoms on a Graphene Monolayer Controlled by Substrate-Induced Ripples
  • 文献类型:   Article
  • 作  者:   REN JD, GUO HM, PAN JB, ZHANG YY, WU X, LUO HG, DU SX, PANTELIDES ST, GAO HJ
  • 作者关键词:   kondo effect, scanning tunneling microscopy, graphene, magnetic impurity, surface adsorption
  • 出版物名称:   NANO LETTERS
  • ISSN:   1530-6984 EI 1530-6992
  • 通讯作者地址:   Vanderbilt Univ
  • 被引频次:   38
  • DOI:   10.1021/nl501425n
  • 出版年:   2014

▎ 摘  要

The Kondo effect, a widely studied phenomenon in which the scattering of conduction electrons by magnetic impurities increases as the temperature T is lowered, depends strongly on the density of states at the Fermi energy. It has been predicted by theory that magnetic impurities on free-standing monolayer graphene exhibit the Kondo effect and that control of the density of states at the Fermi level by external means can be used to switch the effect on and off. However, though transport data for Co adatoms on graphene monolayers on several substrates have been reported, there exists no evidence for a Kondo effect. Here we probe the role of the substrate on the Kondo effect of Co on graphene by combining low-temperature scanning tunneling microscopy and spectroscopy measurements with density functional theory calculations. We use a Ru(0001) substrate that is known to cause graphene to ripple, yielding a moire superlattice. The experimental data show a sharp Kondo resonance peak near the Fermi energy from only Co adatoms at the edge of atop regions of the moire pattern. The theoretical results show that the variation of the distance from the graphene to the Ru substrate, which controls the spin polarization and local density of states at the Fermi energy, is the key factor for the appearance of the Kondo resonance. The results suggest that rippling of graphene by suitable substrates is an additional lever for tuning and selectively switching the appearance of the Kondo effect.