• 文献标题:   Novel 3D Network Architectured Hybrid Aerogel Comprising Epoxy, Graphene, and Hydroxylated Boron Nitride Nanosheets
  • 文献类型:   Article
  • 作  者:   YANG W, WANG NN, PING P, YUEN ACY, LI A, ZHU SE, WANG LL, WU J, CHEN TBY, SI JY, RAO BD, LU HD, CHAN QN, YEOH GH
  • 作者关键词:   aerogel, graphene, boron nitride, highly compressible, thermal propertie
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244
  • 通讯作者地址:   Hefei Univ
  • 被引频次:   5
  • DOI:   10.1021/acsami.8b15301
  • 出版年:   2018

▎ 摘  要

A novel three-dimensional (3D) epoxy/graphene nanosheet/hydroxylated boron nitride (EP/GNS/BNOH) hybrid aerogel was successfully fabricated in this study. This was uniquely achieved by constructing a well-defined and interconnected 3D network architecture. The manufacturing process of EP/GNS/BNOH involved a simple one-pot hydrothermal strategy, followed by the treatment of freeze-drying and high-temperature curing. In comparison with EP/GNS-3, EP/GNS/BNOH-3 demonstrated improvement of 97% for compressive strength at 70% strain. Through compression tests, fracture occurred for EP/GNS-3 at ninth compression cycles, whereas EP/GNS/BNOH-3 retained its original form after twenty compression cycles, with a residual height of 97% (i.e., only 3% reduction). By the addition of BNOH in the polymer matrix, the dynamic heat transfer and dissipation rates of EP/GNS/BNOH aerogels were also considerably reduced, indicating that the aerogel with BNOH additive possessed excellent thermal insulation properties. Thermogravimetric analysis results revealed that the thermal stabilities of EP/GNS and EP/GNS/BNOH aerogels were improved with increasing loading of EP, and EP/GNS/BNOH aerogels exhibited a better thermal stability at high temperatures. Through the elevated levels attained in the compressive strength, superelasticity, and thermal resistance, EP/GNS/BNOH aerogels has the great potential of being a very effective thermal insulation material to be utilized across a board range of applications in building, automotive, spacecraft, and mechanical systems.