▎ 摘 要
Development of multifunctional, versatile biobased polymers can greatly benefit from the discovery and application of 2D sheet-like materials. For instance, the hybrid system integrating graphene oxide (GO) nanosheets with enantiomeric poly(lactic acid) (PLA) showcases several key properties that can address emerging multifunction needs such as good gas barrier and high thermal resistance. Here we revealed that large specific surface area and homogeneous dispersion of GO conferred the construction of interconnected networks in PLA even with relatively low GO contents (0.1 and 0.5 wt %). These well-extended GO nanosheets were ready to provide enormous and active platforms to nucleate preferentially the neighboring stereocomplex chains, prompting the prevailing development of stereocomplex crystals (SCs). The notable scenario associated with the GO distribution was imaged by 2D Fourier transform infrared spectroscopy, and was further elucidated by dynamic crystallization. More importantly, the nanosheets decorated with ordered PLA lamellae, in turn, contributed to the impressive enhancement in barrier and mechanical properties and chemical resistance. For example, a distinct decrease of 98.5% in oxygen permeability coefficient was observed for the composite films containing 0.5 wt GO (6.264 x 10(-17) cm(3) cm cm(-2) Pa-1) compared to the control sample crystallized at 150 degrees C (4.214 x 10(-15) cm(3) cm cm(-2) s(-1) Pa-1). The performance distinction was accompanied by the unusual combination of high tensile strength (73.5 MPa) and high elongation (13.6%), displaying an increase of 31.7% and 183.3% compared to the counterpart, respectively. This may provide a broader context for exploiting 2D nanosheets as robust cells to advance the function and property of PLA, which helps to outline the roadmap for fashioning high-performance, affordable bioplastics.