▎ 摘 要
In this work, we proposed a novel simple protocol for preparing 1-aminopyrene/graphene (ApG) hybrids for fabricating label-free electrochemical impedance genosensor. Graphene, with the structure of a single-atom-thick sheet of sp(2)-bonded carbon atoms, was anchored to 1-aminopyrene (1-Ap) with the pyrenyl group via pi-stacking interaction. The morphology, conductivity, and interaction of ApG hybrids were characterized by transmission electron microscopy (TEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), UV-visible (UV-vis) and fluorescence spectra. The amino-substituted oligonucleotide probe was conjugated to 1-Ap by the cross-linker glutaraldehyde. The DNA hybridization reaction of oligonucleotide probe with target DNA was monitored by EIS. Under optimum conditions, the proposed biosensor exhibited high sensitivity and a low detection limit for detecting the complementary oligonucleotide. The target oligonucleotide could be quantified in a wide range of 1.0 x 10(-12) to 1.0 x 10(-8) M with good linearity (R = 0.9900) and low detection limit of 4.5 x 10(-13) M (S/N = 3).