▎ 摘 要
Graphene paper with good mechanical strength, flexibility, and high conductivity is an emerging functional material for wide applications, but its feasible and scalable preparation remains a challenge. Herein, a high strength, flexible, and conductive graphene/polypropylene (PP) fiber paper was prepared by a traditional papermaking process. In the composite paper, graphene nanosheets were well stabilized on the PP fibers forming a stable three-dimensional conductive interleaved network. Chitosan was found able to build a polar active interface on PP fibers and graphene nanosheets, which can not only promote PP fiber dispersion in water yielding a uniform pulp, but also favor the retention of graphene in the composite paper. As a result, the composite paper presents high strength (15.32 MPa), good conductivity (11,995 S/m), shielding effectiveness (31.1 dB), water resistance, fungi-proof, and thermal conductivity (10.17 W m(-1) k(-1)) properties. This work demonstrates the feasibility of large-scale preparation of graphene composite paper with commercial synthetic fibers through a traditional papermaking process, and expands the potential industrial application of graphene materials.