▎ 摘 要
Graphene (Gr) presents promising applications in regulating the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Light illumination is regarded as a spatiotemporally controllable, easily applicable, and noninvasive mean to modulate material responses. Herein, Gr-transferred silicon (Gr/Si) with a Schottky junction is utilized to evaluate the visible-light-promoted osteogenic differentiation of BMSCs. Under light illumination, light-induced charges, owing to the formation of the Schottky junction at the interface of Gr and Si, accumulated on the surface and then changed the surface potential of Gr/Si. The Schottky junction and surface potential at the interface of Gr and Si was measured by photovoltaic test and scanning Kelvin probe microscopy. Alkaline phosphatase (ALP) activity and quantitative real-time polymerase chain reaction (PCR) measurement showed that such variations of surface improved the osteogenic differentiation of BMSCs, and the activation of the voltage-gated calcium channels through surface potential and accumulation of cytosolic Ca2+ could be the reason. Moreover, X-ray photoelectron spectroscopy characterization showed that surface charge could also affect BMSCs differentiation through the promotion or inhibition of the adsorption of osteogenic growth factors. Such light-promoted osteogenic differentiation of BMSCs on Gr/Si may have huge potential for biomedical materials or devices for bone regeneration application.