▎ 摘 要
In this paper, we propose a reconfigurable scheme for implementation of an electrooptical logic gate by utilizing a Mach-Zehnder interferometer (MZI)-based structure. In order to achieve high performance and small footprint for the proposed logic gate, we have used a compact, broadband, low power and high speed MZI-based electro-optical switch which consists of a silicon-graphene slot waveguide as phase shifter in each arm of the MZI structure. Our design can perform electro-optical AND, OR and XOR logic functions in three different operational modes by using three electrical control signals. The functionality of the reconfigurable electro-optical logic gate is investigated with the help of eye diagram analysis for all three operational modes. Simulation results show that the proposed reconfigurable logic gate is able to work under at least 62.5 Gbit/s with high extinction ratio (ER) about 24.6 dB for transverse electric polarization mode at telecommunication wavelength of 1.55 mu m.