• 文献标题:   Distinguishing characteristics and usability of graphene oxide based on different sources of graphite feedstock
  • 文献类型:   Article
  • 作  者:   MAHMOUDI E, ANG WL, NG CY, NG LY, MOHAMMAD AW, BENAMOR A
  • 作者关键词:   graphene oxide, oxidation degree, natural synthetic graphite, silver nanocomposite, antimicrobial
  • 出版物名称:   JOURNAL OF COLLOID INTERFACE SCIENCE
  • ISSN:   0021-9797 EI 1095-7103
  • 通讯作者地址:   Univ Kebangsaan Malaysia
  • 被引频次:   8
  • DOI:   10.1016/j.jcis.2019.02.023
  • 出版年:   2019

▎ 摘  要

Graphene oxide (GO) has gained popularity in scientific research and industry due to its superior properties, which can be controlled by the synthesis method and graphite feedstock. Despite the availability of different graphite sources, most of the reported studies used natural graphite flake (NGF) as a source of oxidation for GO synthesis. The effect of various alternative graphite feedstocks on the GO properties has not been investigated systematically. This study investigated the influence of graphite feedstock (natural and synthetic) on the characteristics and properties of GO via modified Hummer's method. Natural graphite flake (NGF), natural graphite powder (NGP), and synthetic graphite powder (SGP) were used as graphite feedstock in the study. Energy-dispersive X-ray analysis revealed that the GO produced using NGP (NGP-GO) has higher oxygen to carbon ratio in comparison to GO made from NGF (NGF-GO) and GO made from SGP (SGP-GO) (35.4, 32.7, and 32.2%, respectively), indicating higher oxidation degree for NGP-GO. Zeta potential analysis for NGP-GO, NGF-GO and SGP-GO were -47.8, -42.6 and -39.4 mV, respectively. Morphological analysis revealed that the structures of GO varied according to graphite feedstock, in which (NGP-GO) and (NGF-GO) were highly exfoliated (single-layered structure) while (SGP-GO) showed a multi-layered structure. Further testing was conducted by decorating silver (Ag) nanoparticles on the GO. The results showed that Ag could be uniformly decorated (no agglomeration) on the surface of GO-NGP, due to the presence of more functional groups. Subsequently, the antimicrobial property of AgNGP was the highest with an inhibition diameter of 14.7 +/- 1.2 mm (30% higher than the other samples). In conclusion, the properties of GO can be tuned by selecting the suitable graphite feedstock and this might pave the way to new developments in the GO-based applications. (C) 2019 Elsevier Inc. All rights reserved.